Anionic Surfactants: Their Role in Emulsification

Surfactants Tips: Uses & Benefits in Day-to-day Life

What is a surfactant?
Nonionic Surfactants, also referred to as surfactants, are compounds that can significantly decrease the surface tension or interfacial tension between two liquids, between liquids and gases, and between liquids and solids. The molecular structure of surfactants is amphoteric: hydrophilic group at one end, hydrophobic group in the other end; hydrophilic groups are often polar groups, such as carboxylic acid, sulfonic acid, sulfuric acid, amino or amine groups and their salts, hydroxyl, amide, ether bonds, etc., may also be used as polar hydrophilic groups; and hydrophobic groups are often nonpolar hydrocarbon chains, such as hydrocarbon chains of more than eight carbon atoms. Surfactants are divided into ionic surfactants (including cationic surfactants, anionic surfactants, and amphoteric surfactants), nonionic surfactants, complex surfactants, and other surfactants.
Overview of surfactants
Surfactants are a class of chemical substances having a special molecular structure, which often contain hydrophilic and hydrophobic groups. This amphiphilic nature enables surfactants to create interfaces between water as well as other immiscible liquids and lower interfacial tension, thus playing the roles of wetting, emulsifying, dispersing, solubilizing, foaming, defoaming and so on.
Types of surfactants
Surfactant is really a special chemical substance that will significantly reduce the surface tension from the solvent at a really low concentration, thus changing the interfacial state of the system. This substance usually has both hydrophilic and lipophilic properties and may play a bridge role between two immiscible liquids, water and oil, so it is also referred to as an amphiphilic molecule.
Surfactants have a wide range of applications in lots of fields, such as daily life, industrial production, and scientific research. According to their different chemical structures and properties, surfactants can be divided into two categories: ionic and nonionic. Ionic surfactants can be further split into cationic, anionic, and amphoteric types.
Ionic surfactants
Anionic surfactants
Anionic surfactants are the most generally used and most widely produced surfactants. Common anionic surfactants include salts of fatty acids, sulfonates, sulfate salts and phosphate salts. They have good detergency, emulsification, dispersion, solubilization, as well as other properties and therefore are commonly used in detergents, cosmetics, textiles, printing and dyeing, petroleum, pharmaceutical, and other industries.
Cationic surfactants
Cationic surfactants are generally nitrogen-containing organic amine derivatives with good bactericidal, antistatic and softening properties. Due to their good softness and antistatic properties on fabrics, they are usually used as post-treatment agents, softeners, antistatic agents and sterilizers for textiles.
Amphoteric ionic surfactants
Amphoteric ionic surfactants have both positive and negative charge groups in the molecule and show different charge properties at different pH values. These surfactants have excellent foaming, low irritation, good compatibility, and bactericidal properties and are commonly used in detergents, cosmetics, medicine, and other fields.
Nonionic surfactants
Nonionic surfactants do not dissociate into ions in water and exist in solution in the form of neutral molecules or micro ions. These surfactants are highly stable, not easily affected by strong electrolytes and, acids and bases, and are suitable for other types of surfactants. Common nonionic surfactants include polyethylene glycol type, polyol type, fluorinated surfactants and silicone type. They are commonly used in detergents, emulsifiers, dispersants, wetting agents and so on.
Examples of surfactants:
Ionic surfactants
Anionic surfactants: e.g. sodium essential fatty acids, alkyl sulfates, etc.
Cationic surfactants: e.g. quaternary ammonium salts, amine salts, etc.
Amphoteric ionic surfactants: e.g. amino acid type, betaine type, etc.
Nonionic surfactants
Polyoxyethylene ether type: such as fatty alcohol polyoxyethylene ether.
Polyol type: e.g. glycerol ester, sorbitol ester, etc.
Amine oxide type: like dimethylamine oxide, etc.
Special types of surfactants
Polymer surfactants: surfactants with high molecular chain structure.
Bio-surfactants: such as phospholipids, glycolipids and other surfactants of natural biological origin.
What are the main functions of surfactants?
(1) Emulsification: Because of the large surface tension of grease in water, when grease is dripped into the water and stirred vigorously, the grease is going to be crushed into fine beads and mixed to create an emulsion, but the stirring will stop and re-layering will require place. If you add surfactant and stir hard, it will not be easy to stratify for a long period after stopping, which is the emulsification effect. The reason is that the hydrophobicity of the grease is encompassed by hydrophilic groups of surfactant, forming a directional attraction, lowering the oil in the water dispersion of the work required to make the grease emulsification is superb.
(2) Wetting effect: Parts often adhere to the surface of a layer of wax, grease, or scale-like substances, that are hydrophobic. Because of the pollution of these substances, the surface of the parts is not easy to wet with water. When adding surfactants towards the water solution, the water droplets on the parts will be easily dispersed so that the surface tension of the parts is cut down tremendously to achieve the reason for wetting.
(3) solubilizing effect: oil substances in adding surfactant to be able to dissolve, but this dissolution can only occur when the concentration of surfactant reaches the critical power of colloid, the size of the solubility based on solubilizing objects and properties to determine. In terms of solubilization, the long hydrophobic gene hydrocarbon chain is stronger compared to the short hydrocarbon chain, the saturated hydrocarbon chain is stronger compared to the unsaturated hydrocarbon chain, and the solubilization effect of nonionic surfactants is generally more significant.
(4) Dispersing effect: Dust, dirt, as well as other solid particles are simple to gather together and settle in water; surfactant molecules could make solid particle aggregates split into small particles so that they are dispersed and suspended within the solution and be involved to advertise the uniform dispersion of solid particles.
(5) Foam effect: the development of foam is primarily the directional adsorption of active agent, is the gas-liquid two-phase surface tension reduction caused by. Generally, the reduced molecular active agent is simple to foam, high molecular active agent foam less, cardamom acid yellow foam is definitely the highest, sodium stearate foam is definitely the worst, anionic active agent foam and foam stability than nonionic good, like sodium alkyl benzene sulfonate foam is very strong. Usually used foam stabilizers are fatty alcohol amide, carboxymethyl cellulose, etc. Foam inhibitors are essential fatty acids, fatty acid esters, polyethers, etc. as well as other nonionic surfactants.
Use of surfactants
Surfactants have an array of applications, almost covering our daily life and other industrial production fields. The following are among the main uses of surfactants:
Detergents and cosmetics: Surfactants are essential ingredients in detergents and cosmetics, like laundry detergents, liquid detergents, shampoos, shower gels, moisturizing lotions and so on. They reduce the surface tension of water, making it easier for stains to become taken off the surface of objects while providing a rich lather and lubricating sensation.
Textile industry: Within the textile industry, surfactants are used as softeners, wetting agents, antistatic agents, dispersants, leveling agents and, color fixing agents, etc., which help to improve the caliber of textiles and enhance the uniformity of dyeing and color vividness.
Food industry: Surfactants can be used emulsifiers, dispersants, wetting agents, defoamers, etc., in the manufacture of dairy products, beverages, confectionery, as well as other food products to improve their stability and taste.
Agriculture and pesticides: In agriculture, surfactants can improve the wetting and dispersion of pesticides, thus improving their insecticidal effect. They may also be used as soil conditioners to improve soil water retention and permeability.
Petroleum industry: In the process of oil extraction and processing, surfactants can be used emulsion breakers, oil repellents, anti-waxing agents, and enhancement of recovery, etc., which assist in improving the efficiency of oil extraction and processing.
Pharmaceutical industry: In the pharmaceutical industry, surfactants may be used to prepare emulsions, suppositories, aerosols, tablets, injections, etc., playing the role of emulsification, solubilization, wetting, dispersion and penetration.
In addition, surfactants play an important role in lots of industries, such as construction, paint, paper, leather, and metal processing. Their application in these fields is primarily realized by improving product processing performance, enhancing product quality, and reducing production costs.
High quality factory price surfactant supplier in China
Luoyang Trunnano Tech Co., Ltd (TRUNNANO) is professional in cladding of metal solutions for 10 years , which is actually a professional company with supply and marketing integration.
We provides different kinds of surfactants, such as anionic surfactants, sodium lauryl sulfate, sodium laureth sulfate, sodium lauroyl sarcosinate,etc.
The business features a professional technical department and Quality Supervision Department, a properly-equipped laboratory, and equipped with advanced testing equipment and after-sales customer support center. Send us an email to [email protected].